Computer teaching simulator with virtual reality for ophthalmology

V. V. Gribova, M. V. Petryaeva, L. A. Fedorischev

Abstract-- A software system of the medical computer teaching simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training of medical university students.

Index Terms-- computer simulators, teaching systems, virtual reality, ontology.

I. INTRODUCTION

Urgency of computer teaching systems is well-known and widely discussed in literature. Their main advantages are [1]: accessibility, improving the quality and effectiveness of training, and the possibility of practicing repetitive actions and scenarios that are needed in future professional activity, etc.

A process of development and especially maintenance of computer simulators is very laborious; it demands the high level of the programmer's qualification and concludes coding complicated scripts or programs using imperative programming languages with following their integration. Teaching simulators have a lot of domain knowledge, but domain experts can't directly (without engineers and programmers) take part in the development of such simulators, because they don't understand how to use the special tools of development and maintenance. As a result, the life cycle of such kind of software is still very short. Modification and extension of functional features of them are so complicated processes.

In order to solve above mentioned problems, the authors have developed the cloud service for creation and maintenance of computer simulators with virtual reality. The model and the implementation methods of the service are described in [2-4]. Using this service the computer teaching simulator for ophthalmology was developed. It includes teaching tasks on classic methods of ophthalmology: examination of central and periphery vision, examination of an optical system of an eye and binocular vision.

The aim of this paper is to describe: the architecture of the software service for creation and using teaching simulators, steps of simulator development, and fragments of the medical computer simulator for examination of visual acuity by Sivcev-Golovin's tables.

II. SOFTWARE SERVICE FOR DEVELOPMENT OF TEACHING SIMULATORS

The software service is intended for development, maintenance, and using teaching simulators with virtual reality [4]. It is created using the multi-agent cloud platform IACPaaS (Intelligenten Application, Control and Platform as a Service), which provides controlled access and a unified system of administration for the development of intelligent services and their components represented by semantic networks and agents, and also supports launching and execution of services. [5-6].

The platform is based on the cloud computing technology and provides the remote access to intelligent systems to use them for users and developers for their development and maintenance.

The software service for creation and using teaching simulators comprises informational and program components (Fig. 1) which are saved in the repository of the IACPaaS platform. The informational components are: the ontology of the virtual environment, a model of the teaching simulator, multimedia data and agents. The program components consist of the following services: the structural editor (for forming domain knowledge in the model of the teaching simulator), the graphical editor (for forming visual representation), the agent editor, and the interpreter of the virtual environment. The interpreter has two parts: the server application and the web-client.

Because the service has some different tools (the program components) therefore different groups of developers (domain experts, designers, and programmers) have to take part in a simulator development. The ontology describes the system of terms for development of a model of the simulator thus simplifies its creation. Developers do not need to study any special language for a model creation (it is important for domain experts because they do not know any program languages and technologies of development of program systems). The model is created in the terms of the ontology. Editors are controlled by the ontology and so also simplify labourness of development. The ontology is divided in two levels – the logical level and the presentation level. This is done to separate the work between developers – domain experts and designers [2].

At the first step the domain expert forms the logical part of
the model by the structural editor. He or she defines objects of
the virtual world, their logical attributes, actions, and the
scenario.

Fig. 1. Architecture of the program software for development
and use of virtual simulators.

At the second step the logical part of the model is loaded to
the graphical editor and the designer forms the graphical
representation of the virtual world for the objects formed by
the domain expert. The designer complements the logical part
of the model with 3d-meshes and textures of the objects, creates
graphical images of the objects, the full visual representation
of the virtual scene, and then tests them.

At the third step if it is necessary programmers realize
mathematical, string, and other specific functions. Users
(students, teachers) launch the simulator using the
administrative system of the IACPaaS platform.

The teaching simulators differ from other kinds of simulators
and virtual environments by the scenario which describes the
steps to be done by a student to achieve a goal. Users' actions
and commands are compared with the scenario and the result is
given. The student and the teacher may analyze the result.

III. IMPLEMENTATION OF THE SIMULATOR

The computer teaching simulator consists of teaching tasks
on classic methods in ophthalmology: examination of central
and periphery vision, examination of the optical system of an
eye, and binocular vision. It developed in accordance with
the technology above mentioned. A fragment of the teaching
simulator on examination of the visual acuity by Sivcev-Golovin's
table is presented.

A. Logical part of the simulator model

The non-formal description of the examination method.
The characteristic that a student must determine is the acuity
of vision of a virtual patient. It is generated in a random manner.
To determine it a student in the role of ophthalmologist ask the
virtual patient letters in the ophthalmology table in accordance
with the rules of examination (the student must know the rules
and the order of examination). The virtual patient can give the
following answers: "can’t see", "name the letter" (correctly or
incorrectly), or can give any answer with the delay. The answer
of the virtual patient depends on the acuity of his vision. The
student estimates the given answers and makes a decision either
to continue the examination or to give the result (the acuity
of vision), based on correlation between the number of wrong
answers of the virtual patient and values of characteristics of the
vision acuity.

The description of the scene. A lighted room, a chair for a
patient near the window, the patient sitting on the chair, an
apparatus of Rot is handing on the wall opposite to the window
on the distance of 5 meters from the patient and 1.2 meters from
the floor, the Sivcev-Golovin's table in the Rot's apparatus, a
desk for tools by the window or the wall, an occluder laying on
the desk.

Formal description of some objects of the scene
Occluder
type: changeable, description: "a dashboard of an opacity
material with a handle to cover one eye when the other eye is
examined"
states set: ["lays on the table", "in the left hand of a patient",
"in the right hand of a patient", "close the left eye", "close the
right eye"]

Rot's apparatus
type: changeable, description: "the lighter for tables to
examine the acuity of vision"
states set: ["off", "on"]

Sivcev-Golovin's table
type: table, description: "the table comprise 12 rows of
optotypes "letter"

elements:
1: [«Ш», «Б»],
2: [«М», «Н», «К»],
....

Formal description of some actions
Turn on a Rot's apparatus
type: interactive action
description: "a user clicks on a Rot's apparatus, it is turned on
and lights a table",
objects' states: {
 object "Rot's apparatus", state "on"
}

Name letters on a row
type: interactive action
description: "a user clicks on a row of a table in order to a
patient names letters on the row"
input parameters: [object "Sivcev's table", attribute
"elements"]
result: define by number of row
estimation: ["0 errors", "1 error", "2 errors", ">2 errors", "not
see"]

parameters of estimation:
acuity: [{object "right eye", attribute "acuity of vision"},
C. Implementation of agents for the simulator

A programmer develops agents for processing specific functions of the simulator. For the simulator for ophthalmology the specific function is computing the row of the Sivcev-Golovin's table pointed by the student. The agent has information about a current state of the scene and about parameters of the completed action. The agent receives a description of elements of the table from the scene description, coordinates of a mouse, computes the area of the table, and returns the result to the service.

IV. CONCLUSION

The paper describes a software system for development teaching simulators with virtual reality, steps of simulator development, and fragments of the medical computer simulator for examination of the visual acuity by the Sivcev-Golovin's table.

The software service is problem-independent and developed on the multi-agent cloud platform IACPaaS. Basic ideas, realized in the service are the following: development the model of the simulator and its interpretation instead of coding the simulator using programming languages, involving domain experts and designers in the development process, and development the model of a simulator using editors controlled by the ontology of the virtual environment.

The problem-independent software service can be used not only for creation teaching simulators but also for creation leaning courses, virtual laboratories, and animated videos. Using the software the virtual chemical laboratory and the virtual demonstration of a district of the city have been implemented.

REFERENCES